30 research outputs found

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Performance evaluation of dual resource manufacturing systems

    No full text

    Capacity planning and leadtime management

    No full text

    Design of flexible manufacturing systems with fixed production ratios

    No full text

    Approximate MVA algorithms for open queueing networks with restricted capacity

    Get PDF
    We propose a new method for the performance evaluation of Open Queueing Networks with a Population Constraint (represented by a set of tokens). The method is based on the application of Approximate Mean Value Analysis (AMVA) algorithms. We present procedures for single class networks and for multiple class networks, subject to either a common constraint (shared tokens) or to classbased constraints (dedicated tokens). In fact, the new method is a unified framework into which all procedures for the different types of networks fit. We show how the new method relates to wellknown methods and present some numerical results to indicate its accuracy
    corecore